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F I L T R A T I O N  C O N V E C T I O N  IN A H I G H - F R E Q U E N C Y  V I B R A T I O N  FIELD* 

S. M. Zen'kovskaya and T. N. Rogovenko 1 UDC 536.25; 532.546 

The effect of high-frequency translational vibrations on the occurrence of filtration convection in 
a plane horizontal layer of a viscous incompressible liquid saturating a porous medium is studied. 
Constant temperature is maintained at the boundaries of the layer. It is established that for any 
vibration direction different from the vertical (transverse) direction, convection in gravity and 
thermal gravitational convection under both heating from above and heating from below can 
arise. In the case of  reduced gravity, values of the vibration parameter that lead to transition to 
zero gravity are established. The results are obtained from an analysis of the averaged equations 
of filtration convection, derived for an arbitrary region. 

Convection in a porous medium under nonisothermal conditions occurs widely in nature and engineering 
and is of interest, for example, for studies of the operation of thermal insulators made of porous materials, 
which are used in modern equipment both under earth conditions and in space studies. In this connection, it 
makes sense to study the effect of various factors on filtration convection from the viewpoint of controlling 
the stability of convective flows in a porous medium. One of these factors is the vibration effect. 

Zen'kovskaya [1] studied the effect of high-frequency vertical vibrations on the occurrence of filtration 
convection in a plane horizontal layer of a liquid saturating a porous medium. It is established that vertical 
vibrations prevent the occurrence of filtration convection and can even completely suppress it. 

The present work is a continuation of [1], where the influence of the vibration direction and velocity 
on the convective instability in a layer of a viscous incompressible liquid saturating a porous medium at a 
given transverse temperature gradient is studied. The present investigation is based on an analysis of the 
averaged equations that are a generalization of the equations obtained in [1]. These equations are derived for 
an arbitrary region and analyzed in the particular case of a horizontal layer. It is established that for any 
vibration direction different from the vertical one, destabilizing effects are possible: filtration convection under 
conditions of zero gravity and occurrence of convective regimes under heating from above in gravity. 

Critical values of the thermal and vibration Rayleigh-Darcy numbers are calculated for different 
directions and velocity of vibration in zero gravity and gravity. In the case of reduced gravity, values for 
the vibration parameter are obtained for which transition to zero gravity occurs. These results can be used 
in modeling zero gravity under earth conditions and in controlling convection in a porous medium. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m  and  D e r i va t i on  of t h e  A v e r a g e d  Equa t ions .  Let a vessel D 
containing a porous medium saturated with a viscous incompressible liquid perform plane simple harmonic 
oscillations in a specified direction s --- (cos ~, 0, sin~2) by the law a/w cos(wt). The equations of thermal 
convection in a porous medium in the Darcy-Oberbeck-Boussinesq approximation, written in a moving 
coordinate system, have the form [1, 2] 
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1 0 u  1 Vp u 
0"--~ + ~2 (u,  V ) u  = -- , + gt3T'7 - -~u + we13T, day u = O, 
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hOT a + (u,  V T )  = x V T ,  = - - c o  cos( t)8. 

Here u is the relative velocity of filtration, T is the temperature reckoned from a certain average value, p is 
the pressure, p is the density, g is the acceleration of gravity, 13 is the thermal-expansion coefficient, v is the 
kinematic viscosity, K is the permeability, e is the porosity, b = (pCp)m/(PC.p) I is the ratio of the heat capacities 
of the medium and the liquid, X is the effective thermal conductivity, ~, is a unit vector directed vertically 
upward, a: is the oscillation frequency of the vessel, a is the velocity, q~ is the angle between the vibration 
direction and the horizontal axis, and we is the translation acceleration. The region D C R 3 is considered 
bounded. However, if periodicity along the space variables Xl and x2 is assumed, unbounded regions (layer 
and cylinder) can also be considered. 

The boundary conditions on the solid boundary OD are written as 

un OD OT bTT ol) = O, On + = / '  (1.2) 

which corresponds to the impermeability of the boundary and the general conditions of heat exchange [2]. Here 
bT and f are given functions of a points on the boundary and the function bT can be piecewise continuous, 
so that on different portions of the boundary it is possible to specify different conditions. The case bT ~ ee 
corresponds to specified temperature,  and the case bT = 0 corresponds to specified heat flux. 

We consider oscillation of high frequency (w --, oe) with a small amplitude a/co, assuming that 
the modulation velocity a remains finite. For system (1.1), (1.2) we employ the known Krylov-Bogolyubov 
averaging method [3] in the same manner as is done in [4] for a homogeneous liquid and in [1] for a porous 
medium. According to this asymptotic method, at high frequencies, the unknowns are represented as the sum 
of fast and slow components. The fast component can be expressed in terms of the slow component, and for 
the latter, averaging over the fast t ime leads to a closed system of equations which include a new force called 
vibrogenic in [5]. This method is known to be effective in studies of mechanical systems in a field of rapidly 
oscillating forces. A vivid example is the stabilization of the upper position of a pendulum during vertical 
vibration of the point of suspension. In [1, 4], it is found that vertical vibration of a vessel with a liquid heated 
from below also stabilizes the relative equilibrium of the liquid. This method gave rise to a new trend in the 
theory of convection stability - -  vibration convection - -  which, beginning with [4], has been the subject of a 
number of studies (see, for example, [6]). 

The averaging method for a homogeneous liquid is substantiated in [7, 8], where it is proved that the 
stability of a periodic solution of the original problem can be studied by analyzing the stability of a steady 
solution that is the average over the t ime interval 2~r/w and satisfies the averaged equations. The averaging 
method for mechanical systems with vibration forces and connections is developed in [5], where a unified 
treatment of many vibration effects is given. 

To derive the averaged equations of filtration convection we write the solution (u, T, p) of problem 
(1.1), (1.2) in the form 

u = v + ~ i ,  T =  r + r / ,  p = q + 6 ,  (1.3) 

where v, r ,  and q are slow components and ~, r/, and g are fast components having a zero average over time. 
The equations for the fast unknowns can be obtained if we substitute expressions (1.3) into (1.1) and 

equate vibration terms that  are principal in w: of order ~o in the first equation of (1.1) and of order 1 in the 
second. It should be noted that  under ordinary conditions, the permeability coefficient K is rather small, and 
hence, we assume below that  u / K  = Sw and ~ remains constant as w ~ cr Then the system for the fast 
unknowns takes the form 

1 0~ Vg a On 
- - -  = . . . . .  Aw~ w cos(wQ~rs, div~ = 0, b~-~ = -(!~, Vr) .  (1.4) 
r 0 t  p r 

These equations differ from the corresponding equations in [1] by the term lwl[ in the first equation, which 
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should be taken into account if ~ = O(1) as w ~ oo. As shown below, this leads to redefinition of the 
Grmshof-Darcy vibration number. Eliminating the pressure 5 from (1.4) by using the projector H [9], for the 
unknowns ~ and r/, we obtain the system 

1 
Awry- ~ ( ) div~ 0, b -~  - ( t~ ,Vr) .  (1.5) - a w ~ c o s  ~ t  w ,  = = 

Ot 
Here w = II(sr) ,  where II is an orthoprojector in L2(D) for a subspace of solenoidal vectors with a normal 
component w~ equal to zero at the boundary (n is an outer normal unit  vector). This means that  the vector 
w can be written as w = s r  - VO, where the function �9 is a solution of the Neumann problem 

A r  = d ivs r ,  0r OD = (ST, n). (1.6) 

Integrating system (1.5) with respect to the explicitly included t ime and considering the temperature 
r and the vector w constant on the segment [0, 27r/w], we obtain 

= (B sin(wt) + C cos(wt))w, 77 -- 4 ( B  cos(wt) - C sin(wt))(w, Vr) ,  
WO (~.7) 

- - a ~  v 
B = 1 + ,~292' C = ,keB, )' = Kw" 

Substituting (1.7) and (1.3) into (1.1), (1.2) and averaging over the explicitly contained time, for 
smooth components v, r and q, we obtain a closed autonomous system 

]0v0_.T ~ Vq ~7,vv 2r la2f12+ (r ) + ( , , , v ) , ,  = - - - p  + g Z r ' r -  + ~ 2 ) ( ~ , , v )  . ~ r  - 

d ivv  = 0, b O r + ( v , V r ) = x A r ,  w = s r - V O ,  d ivw = 0, (1.8) 
Ot 

I = Wn OD : O, 07" bTr aD vn OD O'-"n + = f" 

In problem (1.8), we convert to dimensionless variables by choosing the scales as follows: (x, t, v, r, q) --* 
(/, I2/v, v/1, AI, pv2 /K) ,  where l is the characteristic dimension of the cavity and A is the characteristic value 
of the temperature gradient. Denoting the dimensionless variables by the same characters as the dimensional 
ones, we obtain the following system of equations and boundary conditions: 

( ) c ~ -  + ~(v, v ) v  = - v q  + Cr-y, - ~ + Gv(w, V) ~ 
~ s r  - ,,, , (1.9) 

div v = 0, b Or 1 Ot + (v, ~ r )  = ~rrAr, w = s r  -- Vr  div w = 0; 

U a I : W n o D . ~ O ,  Or I f OD O'--n + bTlr OO = . (1.10) 

Here c = K/(12r is the ratio of the dimensionless permeability to the porosity, Pr = v / x  is the Prandtl 
number, Gr = Al3gl2K/v 2 is the Grashof-Darcy filtration number,  and Gv = (af lAl/vr + A2r is 
the Grashof vibration number for the porous medium. The averaged system obtained in [1] corresponds to 

= 0, i.e., it differs by the definition of the Grashof vibration number  and by the expressions for the fast 
components. 

2. M e c h a n i c a l  E q u i l i b r i u m  a n d  I t s  Stabi l i ty .  Necessary (and sufficient for a simply connected 
region) conditions for the existence of an equilibrium solution (v0 = 0) are given in [1]. It follows from these 
conditions that equilibrium is possible only under special heating conditions and special geometry of the 
region D. The liquid can be in equilibrium only when the temperature  distribution is linear along the vertical 
coordinate. This is the case, for example, in a horizontal layer or an infinite circular cylinder. For a rectangle, 
the thermal-insulation condition OT/On = 0 can be specified on the vertical walls. Below, we consider the case 
where the region D is a plane layer lY[ <~ I/2. On the solid boundaries of this region, temperatures T1 and T2 
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are specified so that the characteristic gradient is A = (T1 - T2)/I, where A > 0 for heating from below and 
A < 0 for heating from above. Problem (1.9), (1.10), (1.6) has a steady solution 

y2 
v0 = 0, r0 = --y, q0 = -Gr-~-  + const, w0~ = - y  cos ~, 

(2.1) 
y2 . 

w0~ = 0, ~0 = - y  s ln~ + const. 

We note that  for this solution, the velocity, temperature,  and pressure do not depend on the vibration 
parameters, and, hence, the problem of filtration convection with no vibration forces has the same equilibrium 
solution. We study the stability of solution (2.1) against small plane perturbations of u, T, w, and ~. 

We introduce the stream function by the relations 

8 r  8 r  
u s  = a y '  = -  = 

Then, the linearized system has the form 

OF OF 
, W y  -~ S T ,  " 

,, 02Ar _02T 0 A r  [c 2 02T �9 03F 03F ( 1 -  b~wo~O2AF] 
-c rotox [os --gT 2 ]' 

_~_ 0 r  ' OT OT 
w0~ = - y  cos~,, Prb = A T -  ~xx A F  = -~-y cos ~ -- ~ x  sin~,  (2.2) 

r  for y = 4 - 1 / 2 .  

Here R = Pr- Gr and g = Gv. Pre/b are the Rayleigh-Darcy thermal and vibration numbers. Following [2], we 
set the parameter c equal to zero. Indeed, the permeability coefficient K is on the  order of 10-12-10 -8 cm 2, 
and even for very porous fibrous metals, the value of K does not exceed 10 -4 cm 2. The porosity varies in the 
range 0 < e < 1; for metals, it is close to unity, and for fills of close-packed spheres, 0.25 < e < 0.5. Hence, 
the coefficient c can be set equal to zero, as, for example, when the Darcy model is used to describe filtration 
convection. 

From (2.2,) considering normal perturbations of the form 

0r 
-~x y, t), T(x, y, t), F(x, y, t ) )  = exp (at + iax)(Pr-'u(y), O(y), f(y)), 

we obtain the spectral problem 

L u = R a 2 0 + # a 2 [ c o s 2 ~ O + i a s i n q o f - c o s ~ D f - ( 1 - ~ ) w o x L f ] ,  woz=-ycos~ ,  
(2.3) 

P r b a O = L |  L f = c o s ~ D O - i a s i n ~ O ,  u = O = f = 0  for y = + l / 2 .  

Here D =- d/dy and L = D 2 - a 2 (a is the wave number). 
System (2.3) has constant coefficients for b = r and T = 7r/2. In [1], it is proved that in these cases the 

monotonicity principle holds (instability is caused by monotonic perturbations). In [10], where the case b = r 
is considered, the solution of problem (2.3) was reduced to studying a transcendental equation whose left side 
was a sixth-order determinant.  In the present paper, we assume that the ratio b/r is arbitrary, 0 ~< ~0 ~< ~r/2, 
Rea  = 0, and Im~r # 0. To solve the spectral problem (2.3), we employ a shooting method which reduces 
the boundary-value problem to the Cauchy problem, and in eigenvalue problems, to a numerical solution 
of a complex transcendental equation having the form of a determinant. The Cauchy problems were solved 
by the Runge-Kutta-Fellberg method of the fifth order using the RKF45 subprogram [11] as one spectral 
parameter The frequency of neutral oscillations Im cr was used as one spectral parameter, and the other 
spectral parameter was the vibration Rayleigh-Darcy number/~(a,  T) for R = 0 (convection in zero gravity) 
or the thermal filtration Rayleigh number R(a, ~, I~) (gravitational convection). We note that the calculations 
performed did not reveal vibration instability (on the stability boundary, the imaginary term a is small: 
I m a  ,,~ 10-s), which numerically confirms the monotonicity principle. 
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TABLE 1 

~, deg 
#. 

0 66.79 

30 114.67 

45 274.35 

50 421.64 

52 512.07 

54 630.45 

56 787.54 

58 999.23 

60 1289.60 

65 2664.77 

70 65O4.85 

b/E = 0.5 

3.25 

2.88 

2.17 

1.87 

1.74 

1.62 

1.50 

1.39 

1.27 

1.01 

b/r = 0.8 

52.63 3.25 

85.65 2.99 

193.38 2.06 

284.64 2.04 

342.99 1.93 

419.34 1.78 

521.00 1.62 

657.28 1.52 

844.53 1.40 

1730.44 1.11 

4199.75 

b/s = 
#.  

46.42 

73.87 

157.77 

233.37 

279.74 

340.43 

420.94 

529.39 

677.95 

1380.03 

3333.80 

1 

3.26 

2.99 

2.50 

2.15 

2.01 

1.87 

1.73 

1.58 

1.46 

1.16 

b/s  = 1.25 

40.56 3.24 

63.39 2.92 

130.79 2.45 

190.59 2.19 

227.12 2.06 

274.84 1.92 

338.05 1.78 

423.08 1.65 

539.52 1.50 

1088.55 1.51 

2664.57 0.94 

TABLE 2 

~, deg r 

1 

5 

0 10 

1 

5 

45 10 

39.10 

44.85 

45.63 

46.42 

120.10 

149.51 

153.57 

3.239 

3.255 

3.257 

3.259 

2.531 

2.466 

2.459 

R 

6.253 

1.339 

0.675 

0 

10.959 

2.445 

1.239 

T, deg 

60 

70 

r /z. 

1 487.14 

5 636.77 

10 657.16 

cr 677.95 

1 2368.9 

5 3126.9 

10 3229.5 

1.560 

1.481 

1.472 

1.464 

0.950 

0.901 

0.896 

R 

22.071 

5.047 

2.564 

0 

48.671 

11.184 

5.683 

3. C o n v e c t i o n  in Ze ro  Grav i ty .  It is known that for g = 0 there is no thermal convection. One effect 
due to high-frequency vibration is the possibility of convection occurring in zero gravity. For a homogeneous 
liquid, this problem was studied in [12-14]. As shown in [1], with transverse vibration (~ = 7r/2), filtration 
convection cannot arise in zero gravity. Below, it is established analytically and numerically that in any 
vibration direction containing a longitudinal component, convection can arise in a plane layer when g = 0. 

For ~ = 0, R = 0, and a r 0, problem (2.3) has only positive and simple eigenvalues #(a),  and for 
= ~r/2, all eigenvalues # (a )  < 0. These statements can be rigorously proved mathematically on the basis 

of the theory of oscillation operators of M. G. Krein and F. R. Gantmakher, in the same manner as is done 
in the work of V. I. Yudovich, who employed this theory for problems of hydrodynamic stability [15]. For 
0 < ~ < ~r/2, the existence of positive eigenvalues #(a)  is established numerically. 

Assuming that R = 0 in (2.3), we obtain numerical critical values # . (~ ,  b/e)  = min #(a,  ~, b/e).  The 

parameter b/r take values from 0.5 to 2, which are typical of the most widely occurring porous media. Filtration 
convection in porous layers of different orientation was studied in [16], where calculation results for the main 
characteristics of heat transfer are given and compared with experimental data. The parameter values are 
taken from the tables of [16]. Figure 1 (for b/r = 1) and Table 1 (for b/r = 0.5, 0.8, 1, and 1.25) show 
dependences # , (~)  [and ~,(y~) in Table 1], from which it follows that the vibration Rayleigh-Daxcy number 

383 



/1..10 -3 

4 

20 
J 4O 

Fig. 1 

60 ~ ,  deg 

R; 

80 

40 . - . i , . ,  

R. 

-1"I ~.~o 
-31 

-51 

-71 
0 I 2 0 0.2 0.4 r 3 r 

Fig. 2 Fig. 3 

#,(qo) increases with increase in the angle qo, so that the stability region is extended. For fixed angle q0, the 
stability region decreases as the ratio b/e increases. For b/e = 1 and ~2 ~ a'/2, the asymptotic behavior of the 
vibration Rayleigh number/~(ol) as the wave numbers a ~ 0 is given by 

120 
/~ (a)  = •2 cos  2 

Beginning with m = 0.1 the numerical and asymptotic values calculated from formula (3.1) coincide with an 
accuracy of 1%. 

4. G r a v i t a t i o n a l  C o n v e c t i o n .  Ifg ~ 0, the vibration Rayleigh number/~ can be written as/~ = r2R 2, 
where the parameter r 2 = (a/(v~gl))2Xv/(Kbe(1 + A2e2)) does not depend on temperature  and characterizes 
the ratio of the vibration and gravitation forces. If ~ = ~r/2 there are only positive Rayleigh numbers R(o~, r) 
[1]. A numerical study of problem (2.3) shows that for ~ ~ r/2 there are both  positive R+(m, r, 9) and 
negative R - ( ~ ,  r, qo) values of the Rayleigh numbers. The positive values correspond to heating from below, 
and the negative values corresponds to heating from above. It is known that in the absence of vibration, 
convection is possible only for R > 0. 

Figure 2 shows neutral curves R+(r ,~)  = m~nR+(c~,r,~) for b/~ = 1 and qo = 0, 45, 60, 70, and 

90 ~ The curve R.( r )  = 4z "2 corresponds to the value of the filtration Rayleigh number in the absence of 
vibration. It is evident from the plots that the vertical direction is unique - -  only in this case is absolute 
stabilization possible. For angles 55 ~ ~< ~o < 90 ~ there are values of the parameter  r for which maximum 
stability takes place, and for 0 ~ ~< ~ < 55 ~ vibration has only a destabilizing effect. Figure 3 shows neutral 
curves R , ( r ,  ~0) = - min IR-(m, r, S0)l for ~ = 0, 80, 45 ~ and b/e = 1, which exist only for r -~ 0. The behavior 

Ot 

of the critical values of the parameters/~.  (r, ~o, R) and m. (r, ~0, R) for r 1> 1 is reflected in Table 2. For rather 
large r (r > 10), the critical values of the parameters/~ and m approach practically the same values as in the 
case of zero gravity (r = oo). This fact can be used in modeling zero gravity under earth conditions in studies 
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of filtration convection in a high-frequency vibration field. 
Conclusion.  According to the studies performed, as in the case of Oberbeck-Boussinesq convection, 

high-frequency vibrations can have both stabilizing and destabilizing effects on the convective instability of a 
liquid saturating a porous medium. It is possible to retard convection or even completely prevent it by making 
the vessel perform vertical vibrations. At the same time, intense horizontal vibration has a destabilizing effect, 
giving rise to convection in zero gravity and microgravity. Under earth conditions, horizontal vibration causes 
convection with both heating from below and heating from above. 

Thus, vibration of the vessel can be used to control convective instability in the porous medium. 
We are grateful to V. I. Yudovich for his attention to the work and to S. SIavchev (Bulgaria) and O. 

I. Voinov for useful discussions. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
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